基于CNN-GRU-BP网络的急弯航道表面碍航流态特征预报方法研究
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Prediction method of surface obstructive flow characteristics in sharp bend waterway based on CNN-GRU-BP network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对急弯航道碍航流态通航安全风险问题,为理清不同种类典型碍航流态的发生规律,基于已知的客观条件对未来可能发生的典型碍航流态进行预报,对不同流态特征进行重点归纳和梳理,并进行了急弯航道表面流态特征预测方法研究。采用基于CNN-GRU-BP组合神经网络的预测方法,并与实测值和传统数值方法进行了对比验证。结果表明:组合网络预报方法对航道表面流态特征具备较好的预测性能,能够实时、精确、有针对性地得到在输入的非线性影响因素下不同流态的特征值,对实际航道的通航安全管控提供了数据支持,为防范化解相关通航安全风险提供了技术支撑。

    Abstract:

    To clarify the occurrence law of different types of typical obstructive flow patterns,and predict the typical obstructive flow patterns that may occur in the future based on the known objective conditions,this study focuses on summarizing and sorting out the characteristics of different flow patterns and carries out the research on the prediction method for the surface flow pattern characteristics of sharp bends channels to address the safety risks of navigation caused by obstructive flow patterns.The prediction method based on CNN-GRU-BP combined neural network is used,and compared with the measured values and traditional numerical methods.The results show that the combined network prediction method has good prediction performance for the surface flow characteristics of the channel,and it can obtain the characteristic values of different flow patterns in real time,accurately,and purposely under the input nonlinear influencing factors,which can provide data support for the navigation safety control of the actual channel,and technical support for the prevention and resolution of related navigation safety risks.

    参考文献
    相似文献
    引证文献
引用本文

刘振嘉,任伯浩,梁 锴,等.基于CNN-GRU-BP网络的急弯航道表面碍航流态特征预报方法研究[J].水运工程,2025(6):158-166.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-06-19
  • 出版日期:
文章二维码