基于卷积神经网络的混合浪海域港口波浪预报*
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金面上项目(52071060)


Port wave forecasting in mixed wave sea area based on CNN method
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    招商局港口集团股份有限公司,广东 深圳518067;2.大连理工大学,辽宁 大连 116024) 摘要:港湾振荡是最常见的波浪灾害形式,危害巨大。准确高效地预测港内波浪有助于降低港口损失,避免人员伤亡。基于Boussinesq方程的数值模拟是研究港湾振荡的重要方法,计算成本较高,为应对港湾振荡业务化的预报,以斯里兰卡汉班托塔港为例,建立港湾振荡参数化模型,实现了港内波高的快速预测。将港外实测海浪谱划分为独立的波浪系统,对各个波系分别进行参数化表征,运用最大差异选择算法(MDA)选取计算工况,输入FUNWAVE-TVD模型模拟港内波浪在不同入射波浪参数组合下的响应,生成数据集,并分为泛化集和测试集两部分。泛化集用于训练和挑选卷积神经网络(CNN),测试集用于测试神经网络对于未知工况的性能。神经网络的输出是港内整个计算域上的有效波高和低频波高。结果表明:该模型在测试集上表现良好,能够准确地估计未知工况下的全场波高。随后,根据现场实测数据成功地验证了该模型,证明了波浪数值模型和CNN的可靠性。一旦获取了港外波浪参数,可以快速估计港口内的波浪状况。

    Abstract:

    Harbor oscillations is the most common form of wave disaster,which is very harmful.Accurate and efficient prediction of waves in the port is helpful to reduce economic losses and avoid casualties.The numerical simulation based on Boussinesq equation is an important method to study the harbor oscillation,and the calculation cost is high.To cope with the business oriented prediction of harbor oscillations,this paper proposes a parametric model of harbor oscillation and achieves rapid prediction of wave heights in the port,taking the Hambantota Port in Sri Lanka as an example.Based on the measured data of Hambantota port,the wave spectrum is divided into independent wave systems,each wave system is parameterized,the maximum difference selection algorithm (MDA) is used to select the calculation conditions,and the FUNWAVE-TVD numerical model is input to simulate the response of waves in the port under different incident wave parameter combinations,and the dataset is generated.The dataset is divided into generalization set and test set.The former is used to train and select the convolutional neural network (CNN),while the latter is utilized to measure the network performance on unknown cases.The output of the network is significant wave height and low-frequency wave height over the whole computing domain within the port.The results show that the model performs well on the test set and can accurately estimate the full-field wave height under unknown conditions.Then,the model is successfully verified according to the field measurement data,which proves the reliability of the wave numerical model and CNN.Once the wave parameters outside the port are obtained,the wave conditions inside the port can be quickly estimated.

    参考文献
    相似文献
    引证文献
引用本文

刘二利,马小舟.基于卷积神经网络的混合浪海域港口波浪预报*[J].水运工程,2025(4):32-38.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-04-16
  • 出版日期:
文章二维码