Abstract:Based on the combination of Holland typhoon model and CCMP background wind field,the third generation wave model SWAN is used to simulate 0908 typhoon “Morakot” and 1013 typhoon “Megi” landed Fujian.Comparison of simulation results and Jason-1 satellite data indicate that the simulated waves are in good agreement with the satellite data.The time evolution and spatial characteristics of typhoon waves and the change of wave height about three coves in Fujian territorial waters are analyzed.The results show that the maximum significant and wind speed are both on the right of typhoon center,the angle between the wind and the waves is proportional to the distance to typhoon center and it is larger on the right than left,typhoon center corresponds to a low wave height area,wave height distribution in the inside and outside of the strait show greater asymmetry.During the “Morakot”period,the wave height reaches 10.8 m in the northeast of Fujian coast and the wave height is mainly caused by the wind in Xiamen,Xinhua,Sansha bay.During the “Megi” period,the wave height reaches 9.2 m in the south of Fujian coast,wave height is mainly caused by the wind in Sansha and Xinghua Bay,Xiamen Bay suffered some impact of the swell from the South sea area.