cb57 基于AI的砂船量方算法模型研究及其在人工岛建设中的应用*
基于AI的砂船量方算法模型研究及其在人工岛建设中的应用*
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

中交集团数字化专项(RP2024045117)


Algorithm model of AI-based sand vessel volume measurement and its application in artificial island construction
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对传统砂船量方方式主要依赖人工,存在精度不足和效率低下的问题,提出一种基于深度学习的砂船量方算法。采用三维点云技术结合PointNet++深度学习网络,实现对砂船内部砂体点云的自动分类与精确分割。开发人工智能(AI)砂船量方系统,通过构建PointNet++模型,对采集的点云数据进行语义分割,计算砂石体积。结果表明:在某海外吹填工程中应用本系统,将单艘船舶的量方内业处理时间由传统手工的60 min缩短至不到10 min,显著提高了效率;砂舱区域自动识别分类精度提升至95%以上,测量误差率降低至2%。该AI砂船量方方法能够提升砂船载砂量计算的效率和准确性,并降低人员现场作业风险,满足现代海洋工程对施工计量的智能化要求,具有良好的工程应用价值。

    Abstract:

    To address the issues of low accuracy and inefficiency in traditional sand vessel volume measurement methods,which primarily rely on manual operations,we propose a deep learning-based sand vessel measurement algorithm.Integrating 3D point cloud technology with the PointNet++ deep learning network achieves automatic classification and precise segmentation of sand body point clouds inside the vessel.An artificial intelligence (AI)-based sand vessel volume measurement system is developed,and a PointNet++ model is built to perform semantic segmentation on the collected point cloud data and calculate the sand volume.The results show that in an overseas reclamation project,the system reduces the internal volume processing time for a single vessel from 60 min (manual) to under 10 min,improving efficiency significantly.The accuracy of automatic sand compartment classification increases to over 95%,and the measurement error rate drops to below 2%.The proposed AI-based sand vessel volume measurement approach significantly enhances the efficiency and accuracy of sand load calculations,reduces on-site operational risks,and meets the intelligent measurement demands of modern marine engineering,offering strong practical value for engineering applications.

    参考文献
    相似文献
    引证文献
引用本文

漫犟斌,柴冠军,简 朴,等.基于AI的砂船量方算法模型研究及其在人工岛建设中的应用*[J].水运工程,2025(11):197-201.

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-11-13
  • 出版日期:
文章二维码
0