深圳盐田港海相淤积土标贯响应及力学指标智能解译*
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家重点研发计划项目(2023YFB2604200)


Standard penetration response and intelligent interpretation of mechanical parameters for marine sedimentary soil in Yantian Port,Shenzhen
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    海相淤积土广泛存在于港口等海岸工程中,存在易扰动、工程特性差、力学指标难以准确表征等问题。基于盐田港地勘数据,研究海相淤积土标准贯入响应特征与土性参数间的相关关系,并采用全连接前馈神经网络构建了基于标贯响应的力学参数智能解译方法。结果表明:盐田港海相淤积土标贯响应受土体物理力学性质影响显著,已有经验公式难以表征二者间的相互关系,而本文所构建的智能解译模型能够很好地反映标贯击数与各因素间的非线性关系,可获得较高精度的力学指标预测值。研究成果可为港口建设中海相淤积土力学指标评价提供借鉴和参考。

    Abstract:

    Marine sedimentary soil(MSS) is widely present in coastal engineering such as ports,which is easy to be disturbed,poor in engineering characteristics and difficult to accurately characterize the mechanical parameters.Based on the geological survey data of Yantian Port,the correlation between the standard penetration response characteristics and soil property parameters of MSS is studied,and an intelligent interpretation method of mechanical parameters based on the standard penetration response is constructed by using a fully connected feedforward neural network.The results show that the standard penetration response of MSS in Yantian Port is significantly affected by the physical and mechanical properties of soil,and the relationship between the two is difficult to be characterized by the existing empirical formulas.However,the intelligent interpretation model constructed in this paper can well reflect the nonlinear relationship between the standard penetration number and various factors,and can obtain the predicted value of the mechanical parameters with high accuracy.The research results can provide reference and guidance for the evaluation of mechanical parameters of MSS in port construction.

    参考文献
    相似文献
    引证文献
引用本文

姜 雄,肖 熠.深圳盐田港海相淤积土标贯响应及力学指标智能解译*[J].水运工程,2025(3):71-79.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-03-19
  • 出版日期:
文章二维码