基于机器学习的长江航道水位集合概率预报模型*
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

长江航道规划设计研究院自主立项项目(2023-026-6-Z-Y)


Machine learning-based ensemble probability forecast model of Yangtze River channel water level
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对目前水位预测模型预报不确定性以及水位预测精度不高等问题,通过综合多个模型预报结果,提出一种融合机器学习与贝叶斯模型平均法(BMA)的航道水位集合概率预报框架。以长江航道上荆江河段为研究区域,采用随机森林(RF)、支持向量机(SVM)以及人工神经网络(ANN)进行了沙市站和新厂站的水位预测,结果表明水位预测精度表现为RF>SVM>ANN,3种模型预测精度整体均处于较优状态。基于3种机器学习模型预测结果,采用贝叶斯模型平均法进行了水位集合概率预报,BMA模型在沙市站和新厂站的水位预测结果相较于RF得到进一步提升,并准确获取了未来水位在90%概率下可能的出现范围。研究方法有效提升了航道水位预测精度并实现了概率预报,能够为船舶通航安全提供技术支撑。

    Abstract:

    Aiming at the uncertainties and low accuracy of current water level prediction models,this paper proposes a probabilistic forecast framework of channel water level by integrating machine learning and Bayesian model averaging method.Taking Jingjiang River section of the upper Yangtze River channel as the research area, random forest (RF),support vector machine (SVM) and artificial neural network (ANN) are used to predict the water level of Shashi station and Xinchang station.The results show that RF has the highest prediction accuracy,followed by SVM,and ANN has a relatively lower prediction accuracy,but all of the three machine learning models provide relatively excellent prediction accuracy.Based on the prediction results of three machine learning models,Bayesian model averaging method is used to forecast the water level ensemble probability.Compared with RF,BMA water level prediction results are further improved,and the possible range of future water level under 90% probability is accurately obtained.The method proposed in this study effectively improves the forecast accuracy of waterway water level and realizes probabilistic forecast,which can provide technical support for ship navigation safety.

    参考文献
    相似文献
    引证文献
引用本文

李 雪,蔡孝燕,林妙丽,等.基于机器学习的长江航道水位集合概率预报模型*[J].水运工程,2024(10):158-163.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-10-14
  • 出版日期:
文章二维码