基于零样本深度学习的码头表观剥落病害区域分割与定量计算*
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家重点研发计划项目(2022YFB3207400);国家自然科学基金项目(51709093);江苏省研究生科研与实践创新计划项目(422003263)


Segmentation and quantitative calculation of wharf surface spalling disease regions based on zero-shot deep learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    随着无人机与数字图像处理技术的发展,基于机器视觉的表面病害识别方法因具有安全与快速性,广泛应用于桥梁和道路等方面。由于码头剥落病害图像较复杂,目前该方法难以实现码头表观剥落病害的精确分割与定量分析。提出一种基于零样本深度学习模型SAM(Segment Anything Model)与图像透射变换矫正等技术相结合的码头表观剥落病害区域分割与量化计算方法。SAM算法能够有效克服混凝土剥落图像背景噪声多、灰度差异小的问题,分割方法精度更高、受噪声影响更小;进一步通过矫正、去噪、转换等图像处理操作,实现了对剥落病害关键几何特征的量化计算。经实验室模型与现场图像验证表明,新构建的方法泛化能力强、准确性高,能够实现对码头混凝土建筑表观病害的准确和快速检测,具有广泛的应用前景。

    Abstract:

    With the development of unmanned aerial vehicle and digital image processing technology,surface disease recognition methods based on computer vision have been widely used in bridges and roads because of their safety and rapidity.However,due to the complexity of images,it is challenging to achieve accurate segmentation and quantitative analysis of wharf apparent diseases by current methods.This paper proposes a method for segmentation and quantitative calculation of wharf surface spalling disease regions based on zero-shot deep learning model SAM (Segment Anything Model) and image transmission transformation correction.SAM can effectively overcome the problems of concrete spalling images such as background noise,small gray difference and so on,thus being more accurate and less sensitive by noise.Further,the quantitative calculation of key geometric features of spalling diseases is realized through image processing operations such as correction,denoising and conversion.The experiments based on laboratory model and field images show that the new method has strong generalization ability and high accuracy,and can realize the accurate and rapid recognition of wharf concrete surface diseases and has a wide application prospect.

    参考文献
    相似文献
    引证文献
引用本文

倪佳宁,王启明,朱瑞虎,等.基于零样本深度学习的码头表观剥落病害区域分割与定量计算*[J].水运工程,2024(2):162-168.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-02-02
  • 出版日期:
文章二维码