基于图像识别技术的龙溪口航电工程智能视频监控系统设计
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Design of intelligent video monitoring system of Longxikou Navigation-power project based on image recognition technology
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为加强施工现场的安全管理,对工人的安全帽佩戴进行智能化检测,提出一种基于图像识别技术的航电工程智能视频监控系统,由目标检测模块和网络通信模块构成,按照 C/S架构部署,并成功应用于岷江龙溪口航电枢纽施工现场。其中目标检测模块采用先进的目标检测算法,通过卷积神经网络对图像中的安全带和安全帽进行特征提取、分类和定位,完成识别;网络通信模块通过网络连接视频采集终端、服务器和视频播放终端完成图像采集、传输和显示。对系统各组分的测试表明,系统各项功能完备,各模块间连接完好,能够完成工程建设过程各场景的实时图像采集、传输、识别和显示功能,为龙溪口航电工程建设安全管理提供了坚实的基础。

    Abstract:

    To strengthen the safety management of construction site and intelligently detect the helmets worn by workers,this paper proposes an intelligent video monitoring system for navigation and power project based on object detection,which consists of object detection module and network communication module,deployed according to the C/S architecture,and successfully applied to the construction site of navigation and power hub project on Minjiang River.The object detection module uses advanced object detection algorithm to extract,classify and locate the features of safety belts and helmets in the image through convolutional neural network,and thus complete the recognition of safety belts and helmets.The network communication module connects the video capture terminal,server and video player terminal through the network to complete the image capture,transmission and display functions.The test of each component of the system shows that the system has complete functions and the modules are well connected.It can complete the real-time image acquisition,transmission,detection and display functions of each scene in the process of project construction,providing a solid foundation for the safety management of Longxikou navigation and power project construction.

    参考文献
    相似文献
    引证文献
引用本文

姜旭东,宋本扬,杜泽永,等.基于图像识别技术的龙溪口航电工程智能视频监控系统设计[J].水运工程,2023(10):183-187.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-10-16
  • 出版日期:
文章二维码