基于对象的多波束背散射图像底质分类
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Object-based sediment classification with multibeam backscatter images
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对传统多波束背散射图像底质分类中基于角响应特征分类分辨率低、基于像素统计性特征分类抗噪性低的问题,提出一种基于对象的多波束背散射图像底质分类方法。首先,采用通用背散射处理流程形成辐射畸变改正后的地理编码背散射图;然后,利用简单线性迭代聚类算法(SLIC)对背散射图像进行分割,获得内部均一、边界清晰的对象块;最后,对每个对象块提取其统计性特征,构建特征向量,并以K-means++为分类器实现底质类别划分。该方法提高了底质分类的可靠性,取得了86.96%的分类精度。

    Abstract:

    Given the low resolution of classification based on angular response features and the poor anti-noise performance of classification based on pixel statistical features in traditional sediment classification with multibeam backscatter images,this paper proposes an object-based sediment classification method. For this purpose,a general backscattering processing flow was adopted to obtain geocoded backscatter images after radiation distortion correction. Then,the simple linear iterative clustering(SLIC)algorithm was employed to segment the backscatter images into internally uniform and well-defined object blocks. Finally,the statistical features of each object block were extracted to construct feature vectors,and sediment classification was performed using K-Means ++ as a classifier. The proposed method improves the reliability of sediment classification to a classification accuracy of 86.96%.

    参考文献
    相似文献
    引证文献
引用本文

夏显文.基于对象的多波束背散射图像底质分类[J].水运工程,2022(5):21-25.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-05-05
  • 出版日期:
文章二维码