基于卷积神经网络的防坡堤施工沉降预测*
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

天津市交通运输科技发展计划项目(G2019-10)


Prediction of embankment construction settlement based on convolutional neural network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了保证防坡堤施工安全,通过预测不同施工阶段防坡堤的沉降变形,以调整施工进度和工序。传统沉降预测方法主要包括太沙基固结理论、曲线拟合法和BP神经网络,太沙基固结理论和曲线拟合法预测精度较低,BP神经网络需要大量样本才能逼近最优解。针对这些问题,提出基于卷积神经网络(convolutional neural networks,CNN)建立防波堤施工阶段的沉降预测方法。应用此方法预测天津港大沽口港区防波堤施工阶段沉降量和沉降速率,并以预测结果分析沉降速率所映射的安全风险等级,从而为实际施工提供行动指南。结果表明:卷积神经网络能较为准确地预测沉降变形速率,根据预测结果能够对安全风险等级的结果进行分析并予以指导。

    Abstract:

    To ensure the safety of embankment construction,it is necessary to predict the settlement of embankment in different construction stages of breakwater to adjust the construction schedule and working procedure. The traditional settlement prediction methods mainly include Terzaghi consolidation theory,curve fitting method,and BP neural network. The prediction accuracy of Terzaghi consolidation theory and curve fitting method is low,and BP neural network needs a large number of samples to approximate the optimal solution. Aiming at these problems,this paper proposes a prediction method of breakwater settlement in different construction stages based on convolutional neural networks(CNN). This method is applied to predict the settlement and rate of the embankment in the Dagukou port area of Tianjin port during the construction stage,and the safety risk level mapped by the settlement rate is analyzed by the prediction results,to provide actionable guidance for the actual construction period. The results show that the convolution neural network can accurately predict the settlement rate,and can analyze and guide the results of safety risk level according to the prediction results.

    参考文献
    相似文献
    引证文献
引用本文

翟征秋,程 林,宋效第,等.基于卷积神经网络的防坡堤施工沉降预测*[J].水运工程,2021(8):202-206.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2021-08-02
  • 出版日期:
文章二维码