基于BP神经网络的齿爬式升船机横导向装置结构损伤识别*
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家重点研发计划项目(2016YFC0402002)


Structural damage detection of transverse guiding equipment of gear rack climbing type shiplift based on BP neural network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了准确有效地实现齿爬式升船机横导向装置的损伤识别,提出以固有频率变化率、应力、位移作为输入特征参数,由损伤结构分类器、损伤位置分类器、损伤程度分类器构成的结构损伤识别模型。以向家坝升船机横导向装置为例,对18种损伤状态下的横导向装置进行模态分析和静力学分析,得到1 646组训练样本和100组测试样本,分别采用BP神经网络、支持向量机和贝叶斯算法进行结构损伤识别模型的训练与识别准确率测试。结果表明:基于BP神经网络算法的横导向装置结构损伤识别模型对损伤结构、损伤位置、损伤程度的识别准确率分别为93%、90%和91%,比基于支持向量机、贝叶斯算法的识别准确率分别平均提高7%、13%,该模型能够有效准确地对横导向装置进行损伤识别。

    Abstract:

    To accurately detect the damage for transverse guiding equipment of gear rack climbing type ship lift,considering the natural frequency change rate,stress,and strain as input characteristic parameters,we propose a structural damage detection model combining with the damaged structure classifier,damaged location classifier,and damaged level classifier. Taking Xiangjiaba ship lift as an example,we carry out the modal analysis and static analysis under 18 damage conditions to obtain 1,646 training samples and 100 testing samples. The structural damage detection model for the transverse guiding equipment was trained and tested based on the BP neural network,support vector machine (SVM) and Bayesian. The result demonstrated that the accuracy of the model based on the BP neural network for the damaged structure,damaged location,and damaged level are 93%,90%,and 91% respectively,which was 7% and 13% higher respectively than that based on SVM and Bayesian. The model was effective for the damage detection of the transverse guiding equipment.

    参考文献
    相似文献
    引证文献
引用本文

梁恒诺,肖 童,熊绍钧,等.基于BP神经网络的齿爬式升船机横导向装置结构损伤识别*[J].水运工程,2021(6):158-163.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2021-06-15
  • 出版日期:
文章二维码