基于机器学习的排泥管线压降预测
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Prediction of pressure drop in mud discharge pipeline based on machine learning method
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    福建沿海地区的吹填工程中,主要的土质颗粒为中粗砂。该类型土质在输送过程中阻力大较易发生堵管,导致施工进程延缓。在输送环境下施工,掌握管路内输送阻力的实时信息至关重要。粗颗粒条件下,常用的经验方法如Durand公式法的计算精度较差。基于已有的管路输送研究,以及福建沿海工程的测试数据,使用高斯过程回归方法和支持向量机方法建立管路压降预测模型。两种回归模型均能在训练期得到较为理想的效果,模型R2指标达到0.80以上。在模型的预测期,支持向量机回归模型的R2指标为0.78,高斯过程回归预测模型的R2指标达到0.95。结果表明:基于高斯过程回归的机器学习模型能够较好地预测中粗砂吹填工程的疏浚参数。

    Abstract:

    In the reclamation project in the coastal areas of Fujian,the main soil particles are medium-coarse sand types. In the process of transportation of this type of soil,large resistance is more likely to cause pipe blockage,which will delay the construction process. Under this working condition,it is very important to grasp the real-time information of the conveying resistance in the pipeline. However,under coarse particle conditions,commonly used empirical methods such as the Durand formula method have poor calculation accuracy. In this paper,based on the existing pipeline transportation research and the test data of the actual coastal engineering in Fujian,the Gaussian process regression method and support vector machine method are used to establish the prediction model of the pressure drop in the pipeline. Both regression models can get more ideal effects during the training period,the R2 index of the model is above 0.80. In the prediction period of the model,the R2 index of the support vector machine regression model is 0.78,and the R2 index of the Gaussian process regression prediction model reaches 0.95. The results show that the machine learning prediction model based on Gaussian process regression can better predict the dredging parameters of the medium-coarse sand dredging project.

    参考文献
    相似文献
    引证文献
引用本文

曲嘉铭,袁超哲,陶润礼,等.基于机器学习的排泥管线压降预测[J].水运工程,2021(1):196-201.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2021-01-08
  • 出版日期:
文章二维码