

内河航运枢纽船闸水闸同步 施工导流方案仿真分析

卢 勇,王志敏,赵紫辰

(中交二航局第一工程有限公司, 湖北 武汉 430050)

摘要:导流明渠体型优化研究对保证施工安全、节约工程投资具有重要意义。应用平面二维水流数学模型,研究来流条件 及导流明渠体型优化方式对导流渠过流能力及工程河段水力特性的影响。结果表明:当扩大相同大小的导流明渠断面面积时, 相较于增加渠底宽度,增加渠深导流渠上游的壅水高度更低、导流渠内部及出口处水流紊动更弱;随断面增大,两种方案的导 流渠上游最大相对壅水高度的差异增大;最大相对壅水高度随流量增大而增大,增加渠深方案的上游最大相对壅水高度随流量 增大的增幅更小;增加渠深方案的导流渠内部最大流速更小,且水流归槽状态更好,堰面流速和回流强度更小。

关键词:导流明渠;体型优化;壅水;水力特性;数值模拟
 中图分类号:TV52;U65
 文献标志码:A

文章编号: 1002-4972(2024)07-0201-09

Simulation of synchronous construction diversion scheme for ship locks and sluices in inland navigation junction

LU Yong, WANG Zhimin, ZHAO Zichen

(The First Construction Company of CCCC Second Harbor Engineering Co., Ltd., Wuhan 430050, China)

Abstract: The study of optimizing the shape of the diversion channels is crucial for saving project investment and ensuring construction safety. This paper applies a two-dimensional water flow mathematical model to study the effects of the incoming flow conditions and the optimization methods for the the shape of diversion channels on the overflow capacity of the diversion channels and the hydraulic characteristics of engineering reach. The results show that when the cross-sectional area of the same size diversion channel is expanded, compared to increasing the width of the channel bottom, the height of backwater in the upper reaches of the diversion channel is lower and the turbulence in the internal and outlet of the diversion channel is weaker. With the increase of the section area, the difference of the maximum relative backwater height in the upper reaches of the diversion channel between the two schemes increases. The maximum relative backwater height increases with the increase of flow rate. In the scheme of increasing channel depth, the maximum flow velocity inside the diversion channel is smaller, and the flow return state is better, and the flow velocity and backflow strength are smaller.

Keywords: diversion channel; scheme optimization; backwater; hydraulic characteristics; numerical simulation

为保证施工进度,唐河双沟枢纽项目采取船 闸与水闸同步施工方案,水闸采用一次拦断河床 围堰施工,船闸采用滩地预留围堰施工,并于滩 地区域开挖导流明渠进行过流。受空间制约,导 流明渠进出口距船闸及水闸的上下游围堰较近, 导流明渠的水力特性将对围堰坝前水位壅高、围 堰冲刷等造成直接影响^[1]。开展导流明渠体型优 化方式及其水力特性的研究对保证施工安全,节 约工程投资具有重要意义。

对涉水建筑物的过流特性和水流结构的研究 方法主要为模型试验^[2-3]及数值模拟^[4-5]。马育斌 等^[6]基于物理模型试验对围堰、消力池等进行优

收稿日期: 2023-10-27

作者简介:卢勇 (1975—),男,正高级工程师,研究方向为港口、海岸及近海工程。

化,通过分析水位、流速、流态等关键水力指标, 提出了满足施工要求的导流方案:苏学灵等[7]通 过水槽试验发现围堰对上游水位的影响较大,对 上游流场的影响较小:肖苡辀等^[8]采用数值模拟 方法研究戗堤进占过程的水力特性以及截流对岸 坡的冲刷影响:王圆圆等^[9]采用 MIKE21 软件对施 工导流中的束窄河道泄流进行数值模拟,分析围 堰体型对束窄河道水流流态的影响,并对其进行 优化: 彭杨等^[10]采用平面二维模型, 定量研究不 同束窄度下围堰附近的水流运动特性; Wang 等^[11] 建立中短期水位预测模型,并对钢板桩围堰产生 的上游壅水进行预测。桥梁壅水^[12]方面、针对桥 墩数量、桥墩直径、桥梁跨径^[13]、桥墩形状^[14]、 桥墩布置形式以及河道边界条件[15]对桥梁壅水影 响的研究较多,此外,闫杰超等^[16]基于动量守恒 原理提出多桥墩最大壅水高度的预测方法; 孙治 平等[17]对不同洪水频率下桥梁壅水特性进行数值 模拟与对比分析,发现 Henderson 公式计算值与二 维模型模拟值更为接近,且变化趋势较一致。

以上成果主要针对挡水建筑物的壅水及阻洪 特性,对于导流建筑物的泄水特性研究较少,缺 乏关于导流明渠体型对工程河段水力特性影响的 研究。本研究依托唐河双沟项目,采用增加渠深 和渠底宽度两种方式扩大导流明渠断面,利用平 面二维模型研究不同流量和面积条件下导流明渠 的水力特性,系统分析断面扩大方式、面积等因 素对导流渠导流能力的影响,研究成果可为导流 渠体型的优化提供支撑。

1 工程概况

枢纽所在河谷开阔,呈浅U形,河床宽浅,河 道微弯,呈弓字形。枢纽主要由船闸、泄水闸、连 接段、过鱼设施和跨闸交通桥组成。工程采取船 闸、水闸同步施工方案,枯水季节利用明渠导流, 导流明渠设计流量为 900 m³/s(10 月—次年 5 月, 10 a —遇流量),汛期破开泄水闸围堰度汛,汛后 再恢复泄水闸围堰。双沟枢纽工程平面布置见 图 1。

图1 工程平面布置

2 数值模拟

- 2.1 模型建立
- 2.1.1 控制方程

采用丹麦水力研究所(DHI)研制的 MIKE21 FM

平面二维水流模型进行计算。二维水动力数值模 拟分析基于 4 项基本假定:不可压缩性假定、静 水压力假定、Boussinesq 假定、Reynolds 值均布假 定。水动力模块控制方程应用沿水深积分的不可 压缩的 Navier-Stokes 方程,主要包括二维平面流的连续性方程、运动方程。

水流连续方程:

$$\frac{\partial z}{\partial t} + \frac{\partial p}{\partial x} + \frac{\partial q}{\partial y} = s \tag{1}$$

$$\frac{\partial p}{\partial t} + \frac{\partial}{\partial x} \left(\frac{p^2}{h}\right) + \frac{\partial}{\partial y} \left(\frac{pq}{h}\right) + gh \frac{\partial z}{\partial x} + \frac{g \frac{p}{h} \sqrt{\frac{p^2}{h^2} + \frac{q^2}{h^2}}}{c^2} - \Omega q - E\left(\frac{\partial^2 p}{\partial x^2} + \frac{\partial^2 q}{\partial y^2}\right) = s_{ix}$$

$$\frac{\partial q}{\partial t} + \frac{\partial}{\partial y} \left(\frac{q^2}{h}\right) + \frac{\partial}{\partial x} \left(\frac{pq}{h}\right) + gh \frac{\partial z}{\partial y} + \frac{g \frac{q}{h} \sqrt{\frac{p^2}{h^2} + \frac{q^2}{h^2}}}{c^2} - \Omega q - E\left(\frac{\partial^2 p}{\partial x^2} + \frac{\partial^2 q}{\partial y^2}\right) = s_{iy}$$
(2)

式中: *z* 为水位, m; *p*、*q* 为 *x*、*y* 方向单宽流量, m³/s; *t* 为时间; *h* 为水深, m; *s* 为源汇项; *s*_{*ix*}、 *s*_{*iy*} 为源汇项在 *x*、*y* 方向的分量; *c* 为谢才阻力系 数; *Ω* 为科氏力; *E* 为涡黏扩散系数。

2.1.2 边界条件

在水动力模块中设定河道左、右两岸均为陆 边界,进口给定流量,出口给定相应的水位,对 于不滑动岸边界,取 *U*=*V*=0。模型糙率系数的选 取需经过模型的校验确定,工程河段主槽糙率系 数取值范围为 0.020~0.025,滩地验证取值范围 为 0.030~0.040。

涡黏系数根据 Smagorinsky 公式确定

$$E = C_{\rm s}^2 \Delta^2 \left[\left(\frac{\partial u}{\partial x} \right)^2 + \frac{1}{2} \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right)^2 + \left(\frac{\partial v}{\partial y} \right)^2 \right]$$
(3)

式中:u、v为沿x、y方向的流速分量,m/s; Δ 为 网格间距,m; C_s 为计算参数, $0.25 < C_s < 1.00$ 。 为满足计算稳定收敛条件,本次模型计算中最大 时间步长取5s。

2.1.3 方程离散与求解

采用有限体积法对计算区域进行空间离散, 将平面二维模型细分为不重叠的单元,计算区域 采用三角形网格进行剖分,水位定义在网格节点 上,单宽流量定义在相邻网格中部,求解格式采 用一阶精度方法。

2.2 率定与验证

依据工程河段 2023 年 9 月的晴雨表和地形进 行数值模拟计算,目的为率定与验算模型参数、 调整参数至合理范围。采用 2023-09-07 及 2023-09-09 实测水位进行率定与验证,结果见表 1,表 中结果吻合度较好、偏差绝对值控制约 0.10 m, 满足 TS/T 231-4—2018《内河航道与港口水流泥沙 模拟技术规程》^[18]要求,数学模型较为合理,可 用于下一步研究。

表 1 率定与验证计算结果

计算工况	实测流量/(m ³ ·s ⁻¹)	实测上游水位/m	实测下游水位/m	数模计算上游水位/m	数模计算下游水位/m
率定模型(2023-09-07 实测)	484	64. 74	64. 26	64.77	64. 25
验证模型(2023-09-09 实测)	430	64. 31	63.96	64.22	63.98

2.3 导流渠优化方案

参考 SL 623—2013《水利水电工程施工导流设 计规范》^[19],并考虑施工布置,导流渠设计流量、 允许的抗冲流速及河道的地形地质条件等因素, 设置导流渠渠底纵坡为 0.1%,进出口与河道夹角 约 30°,全断面采用 0.3 m 厚袋装土护坡。

导流渠断面采用梯形断面,两侧坡比1:3,将

设计流量下围堰不漫顶作为控制条件,设置断面 最小底宽 b_0 =50.0 m、最小深度 h_0 =8.0 m,对应 的最小断面面积 A_0 =592 m²,并将最小断面作为 控制断面。扩大相同断面面积 ΔA ,增加渠深为方 案 1,增大渠宽为方案 2,比较两方案导流渠的水 力特性,进行无量纲处理,定义断面扩大率 ψ = $\Delta A/A_0$ 。控制断面与 ψ =17.6%工况下方案 1、2 的 典型断面见图 2,数模计算范围与水位实测点见图 3。

c) 方案2(*ψ*=17.6%)

图 2 导流明渠典型断面 (单位: m)

 Z_0/m 1号测线起点 $\begin{array}{c} 766\\75\\74\\73\\72\\71\\70\\68\\67\\66\\56\\4\\6\\3\\2\\61\\60\\5\\8\\57\\\end{array}$ 沿程距起点(0 km) 3 567 5 水位实测点 (上游) 3 567.0 2~3号测线起点 数模测点(1号测线) ▲ 数模测点(2号测线) ₽ 3 566.5 数模测点(3号测线) 3 566.0 水位实测占 下游) 1~3号测线 级占 3 565.5 628.0 628.5 629.0 629.5 630.0 x/km 图 3 计算范围及测点布置 2.4 计算工况

采用方案 1 对 A₀ 进行扩大, 渠深增加量分别 为 0.5、1.0、1.5、2.0 m, 对应断面扩大率 ψ 分 别为 8.4%、17.6%、26.0%、35.1%, 各断面扩 大率 ψ 对应方案 2 的渠宽增加量为 6.3、12.6、 19.2、26.0 m。数值模型试验流量分别为 300、 500、700、900 m³/s。共进行两种方案 32 组计算 工况,其中方案 1 计算工况见表 2。设置 4 级流量 下无导截流工程计算工况进行对比。

表 2 方案1 不同断面扩大率下导流明渠导流能力计算方案

断面扩大率	工况					
$\psi/\%$	300 m ³ /s		500 m ³ /s	700 m ³ /s	900 m ³ /s	
8.4	FA1- ψ 8. 4%- Q 300		FA1-ψ8. 4%-Q500	FA1-\u03c68.4\u03c6-Q70	0 FA1-ψ8. 4%-Q900	
17.6	FA1- ψ 17. 6%- Q 300		FA1- <i>ψ</i> 17.6%- <i>Q</i> 500	FA1- <i>ψ</i> 17.6%- <i>Q</i> 7	00 FA1-ψ17. 6%-Q900	
26.0	FA1- ψ 26. 0%- Q 300		FA1- ψ 26. 0%- Q 500	FA1- <i>\psi</i> 26.0%- <i>Q</i> 7	00 FA1-ψ26. 0%-Q900	
35.1	FA1- ψ 35. 1%- Q 300		FA1-ψ35. 1%-Q500	FA1-ψ35. 1%-Q7	00 FA1-ψ35. 1%-Q900	

注: 方案1工况编号为 FA1- ψ -Q, 方案2工况编号为 FA2- ψ -Q。

3 结果分析

3.1 水位

以 500 m³/s 工况下 ψ = 17.6% 方案 1、2(FA1ψ17.6%-Q500、FA2-ψ17.6%-Q500)为例,对比分 析区域内水面线的变化情况,图 4、5 分别为 500 m³/s 工况下原河道及ψ=17.6% 方案 1、2 水 位云图和数模测点水位对比,如图所示:1)两方 案受导截流工程的影响,导流明渠上游水位均有 较大程度的上涨, 方案 2 水位上涨幅度总体大于 方案 1; 导流明渠下游水位均有不同程度的降低, 跌落幅度总体较小。2)上游水位抬升范围由围堰 区一直延续至起点断面,下游水位在靠近导流明 渠出口跌落幅度较大。3)由图 5a)可以看出 1 号 测线位于导流渠内部的水面线出现了一定程度的 波动, 方案 2 的波动幅度较为剧烈, 造成导流渠 出口处水流紊动更为强烈。

图 5 500 m³/s 工况下原河道及ψ=17.6% 方案 1、2 数模测点水位对比

方案 1、2 各工况的上游最大水位壅高与下游 最大水位降低值见表 3。结果显示: 1)方案 1上 游最大水位壅高值范围为 0.491 1~1.627 9 m,最 大壅水水位随流量的增加而增加,随断面扩大率 的增加而减小,下游最大水位降低值范围为 -0.184 1~-0.043 8 m,其绝对值亦随流量的增加 而增大,随断面扩大率的增加而减小。2)方案 2 上游最大壅水高度和下游最大水位降低值与方案 1 变化趋势相同,但相同流量和断面扩大率下,方 案 2 的上游最大水位壅高大于方案 1;方案 2 上游 最大水位壅高值范围为 0.973 2~1.869 8 m,下游

表 3 方案 1、2 各工况下上游最大水位壅高与下游最大水位降低值								
士安	断面	水位壅高与						
万条 扩大率/9	扩大率/%	降低	300 m ³ /s	500 m ³ /s	700 m ³ /s	900 m ³ /s		
8.4 	9.4	上游最大壅高	1.246 3	1.261 3	1.572 5	1.627 9		
	8.4	下游最大降低	-0.083 3	-0.1027	-0.148 6	-0.184 1		
	17.6	上游最大壅高	0.675 3	0.8087	1.143 2	1.1764		
	17.0	下游最大降低	-0.082 1	-0.080 5	-0.122 3	-0.149 6		
	26.0	上游最大壅高	0.648 1	0. 759 7	0.934 7	0.959 9		
	26.0	下游最大降低	-0.059 1	-0.065 2	-0.111 4	-0.135 8		
	25.1	上游最大壅高	0. 491 1	0. 497 7	0.6266	0.675 5		
	35.1	下游最大降低	-0.043 8	-0.060 9	-0.087 2	-0.111 7		
8.4 17.6 2 <u>26.0</u> 35.1	9.4	上游最大壅高	1.4124	1.827 5	1.849 3	1.8698		
	8.4	下游最大降低	-0.096 6	-0.468 6	-0. 198 2	-0.245 7		
	17. (上游最大壅高	1.341 3	1. 475 4	1.662 4	1.684 8		
	17.0	下游最大降低	-0.029 9	-0.047 5	-0.086 2	-0.113 3		
	26.0	上游最大壅高	1.029 2	1. 240 3	1.262 0	1.323 3		
		下游最大降低	-0.007 0	-0.0104	-0.010 8	-0.017 2		
	35. 1	上游最大壅高	0.973 2	1. 161 5	1. 181 0	1.1918		
		下游最大降低	-0.004 7	-0.008 6	-0.012 2	-0.014 6		

最大水位降低值范围为-0.468 6~-0.004 7 m。

3.2 最大相对壅水高度

采用最大相对壅水高度作为指标,分别研究 其与流量和断面扩大率的变化关系以及上游壅水 高度的变化。最大相对壅水高度 η 为:

 $\eta = \Delta H_{\rm max}/H$ (4)式中: ΔH_{max} 为上游最大壅水高度,m; H 为无导 截流工程的相应位置水位值,m。

图 6 为方案 1、2 最大相对壅水高度与流量变 化。如图所示:1)相同面积扩大率条件下,方案 1 最大相对壅水高度随流量的增加而增加, 伴随面 积扩大率增大,其随流量增加的增速明显下降; 在相同流量条件下,最大相对壅水高度随面积扩 大率增加而降低,伴随流量增大,其随面积扩大 率增加的降幅明显增大。2) 方案 2 与方案 1 呈相 近的变化趋势,但相同流量和面积扩大率条件下, 方案2的最大相对壅水高度更高:与方案1之间 的差异随面积扩大率的增大而显著增大。由此可 见, 方案1绝对壅水高度、相对壅水高度均优于 方案2,特别当流量比较大,导流渠过流能力不 足,此时采用增加渠底深度方式对导流渠体型进 行优化,能显著减小壅水高度。

a) 方案1最大相对壅水高度与流量的关系

b) 方案1最大相对壅水高度与面积扩大率的关系

3.3 流速

图 7 和 8 分别为 500 m³/s 工况下原河道及 ψ= 17.6% 方案 1、2 (FA1-ψ17.6%-Q500、FA2ψ17.6%-Q500)流场分布云图和数模测点流速对 比图,如图所示:1)两方案受导截流工程的影 响,导流明渠上游流速均有一定程度的降低,下 游流速变化不大,其中水闸上下游围堰的坝前流 速较原河道跌落较大。2) 由图 8a)1 号测线可以 看出方案1、2导流渠内部流速值均较大,其中 方案1流速最大值为2.4 m/s,出现在导流渠进 口附近; 方案 2 流速最大值为 4.1 m/s, 出现在 导流渠出口附近; 方案 1、2条件下, 位于导流 渠内部的流速出现了一定程度的波动, 方案 2 的 波动幅度较大。3) 方案1明渠进、出口速度均 小于方案 2, 方案 1 导流渠水流归槽状态好, 水 面平顺, 堰面流速和回流强度均较方案2有一定 程度的减弱。

图 7 500 m³/s 工况下原河道及 ψ=17.6% 方案 1、2 流速云图

方案 1、2 导流渠最大流速随面积扩大率及流 量的变化情况见图 9,如图所示:1)相同面积扩 大率条件下,方案 1 导流渠最大流速随流量的增 加而增加;在相同流量条件下,导流渠最大流速 随面积扩大率的增加而降低,当面积扩大率增大, 导流渠最大流速随流量增大增速变缓。2)方案 2 与方案 1 流速变化趋势相近,但相同流量和面积 扩大率条件下方案 2 的导流渠最大流速总体更高。 由此可见,方案 1 对减小导流渠流速更有利,有 利于施工及度汛安全。

4 结论

相同流量条件下,采用增加渠底深度及增加渠底宽度两种方式扩大导流渠断面,断面扩大率ψ相同时,前者的最大壅水高度及导流渠内部水流波动程度更小,出口水流紊动更弱。

ψ 较小时,两种方式扩大导流渠明渠断
 面,其上游的最大相对壅水高度差异较小,随ψ
 增大差异增大;随流量增大,最大相对壅水高度
 增大,增加渠深方案下最大相对壅水高度随流量
 增大的增幅更小。

3)相同 ψ 和流量条件下,增加渠深相比增加 渠底宽的导流渠内部最大流速更小,且水流归槽 状态更好,堰面流速和回流强度均更小;随ψ增 大,两种导流明渠体型优化方案的导流渠最大流 速差异增大,增加渠深方案下导流渠最大流速随 流量增大的增幅更小。

参考文献:

- [1] 殷彤,周喜德,李进,等.桐子林导流明渠体型优化数值
 模拟研究[J].四川大学学报(工程科学版),2010,42(4):29-34.
- [2] 刘嘉夫,齐昕. 龙抬头水电站泄洪洞水力特性研究[J]. 水利水电技术, 2019, 50(2): 139-143.
- [3] 董合费, 徐温仁, 赖勇. 输水工程无压洞与有压洞的局
 部水力衔接特性研究[J]. 水电能源科学, 2023, 41(1):
 108-111.
- [4] 乔瑞森.两岸临河施工围堰壅水特性数值模拟研究[J]. 水电能源科学, 2022, 40(6): 134-138.
- [5] 陈桂友,赵青,穆仁会.引水隧洞进口明满流数值模拟[J].南水北调与水利科技,2016,14(4):163-167,209.
- [6] 马育斌,王常红,李维,等. 渠江风洞子航运工程施工导流优化方案设计[J]. 水运工程, 2023(S1): 75-79, 84.
- [7] 苏学灵,纪昌明,彭杨.分期导流围堰对河道水流影响

的试验研究[J]. 中国农村水利水电, 2009(4): 91-93, 97.

- [8] 肖苡辀,罗伟,冯先导,等.汉江某航电枢纽汛期导截流 工程数值仿真与实践[J].水运工程,2022(12):204-209,244.
- [9] 王圆圆,黄细彬.分期导流束窄河道泄流物理试验及数 值模拟研究[J].水电能源科学,2012,30(12):98-100.
- [10] 彭杨,张红武.分期导流围堰束窄河床二维水流特性 模拟及分析[J].水力发电学报,2013,32(4):7.
- [11] WANG J, JIANG Z, LI F, et al. The prediction of water level based on support vector machine under construction condition of steel sheet pile cofferdam [J]. Concurrency and computation: Practice and experience, 2021, 33 (5): e6003.
- [12] 丁伟, 唐洪武, 戴文鸿, 等. 涉河桥梁阻水影响因素研究[J]. 水利水运工程学报, 2011(4): 52-56.
- [13] Hunt J, Brunner G W, Larock B E. Flow Transitions in Bridge Backwater Analysis [J]. Journal of Hydraulic Engineering, 1997, 125(9): 981-983.
- [14] 袁晓渊, 冯淑琳, 王子凯, 等. 桥墩形状对水流影响的
 二维数值模拟[J]. 人民黄河, 2020, 42(S2): 37-39, 42.
- [15] 王涛,郭新蕾,李甲振,等.河道糙率和桥墩壅水对宽
 浅河道行洪能力影响的研究[J].水利学报,2019,
 50(2):175-183.
- [16] 闫杰超,徐华,焦增祥.基于动量守恒的桥墩壅水预测及数值模拟[J].人民长江,2020,51(S2):280-284.
- [17] 孙治平,赵志宏,刘子金,等.基于 MIKE21 的跨河桥
 梁壅水数值模拟分析[J].水资源与水工程学报,
 2022,33(6):129-136.
- [18] 交通运输部天津水运工程科学研究院.内河航道与港口水流泥沙模拟技术规程: TS/T 231-4—2018[S].北京:人民交通出版社股份有限公司,2018.
- [19] 长江勘测规划设计研究院.水利水电工程施工导流设 计规范: SL 623—2013[S].北京:中国水利水电出版 社, 2013.

(本文编辑 赵娟)